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ABSTRACT
The coordination of emergency responders and robots to undertake
a number of tasks in disaster scenarios is a grand challenge for
multi-agent systems. Central to this endeavour is the problem of
forming the best teams (coalitions) of responders to perform the
various tasks in the area where the disaster has struck. Moreover,
these teams may have to form, disband, and reform in different ar-
eas of the disaster region. This is because in most cases there will
be more tasks than agents. Hence, agents need to schedule them-
selves to attempt each task in turn. Second, the tasks themselves
can be very complex: requiring the agents to work on them for dif-
ferent lengths of time and having deadlines by when they need to
be completed. The problem is complicated still further when dif-
ferent coalitions perform tasks with different levels of efficiency.
Given all these facets, we define this as The Coalition Formation
with Spatial and Temporal constraints problem (CFSTP). We show
that this problem is NP-hard—in particular, it contains the well-
known complex combinatorial problem of Team Orienteering as a
special case. Based on this, we design a Mixed Integer Program
to optimally solve small-scale instances of the CFSTP and develop
new anytime heuristics that can, on average, complete 97% of the
tasks for large problems (20 agents and 300 tasks). In so doing, our
solutions represent the first results for CFSTP.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multi-Agent Systems

General Terms
Algorithms
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1. INTRODUCTION
Forming teams of agents which are able to effectively work to-
gether on tasks is a key issue for many practical applications. In
particular, the coordination of emergency responders and robotic
agents (e.g., Unmanned Aerial Vehicles and Unmanned Ground
Vehicles) to operate in disaster scenarios is a very challenging and
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important problem for multi-agent systems [5]. Coalitions of re-
sponders must coordinate to form teams that are able to tackle fires,
dig out victims, and unblock roads in the most effective way. More-
over, since typically the number of agents is limited, these teams are
likely to continually form, disband, and reform, in numerous of dif-
ferent parts of the affected area. Hence, agents need to (re)schedule
their activities to execute tasks over time. Furthermore, each task
might require a certain amount of work to be completed (the work-
load of the task) so that agents need to contribute to different tasks
different amounts of time, also depending on their abilities to exe-
cute a particular task. Second, tasks may be of different urgency or
have deadlines by when they need to be completed (otherwise vic-
tims die or buildings burn down completely): if a building is on fire,
the agents need to arrive there before it is burnt down and spend a
specific amount of effort (spraying water and evacuating victims) in
order to extinguish it. Finally, some of the tasks may require agents
with different capabilities. For example, the task of rescuing a vic-
tim from rubble requires agents that have the ability to locate and
dig, and those that can heal the victim. The problem may be fur-
ther complicated if the agents have tools or knowhow that do not
work well together, and hence, different teams may be effective to
different degrees. For example, a team of two fire-brigade agents,
one with a water tank and one with a hose, may not be useful at all
if the hose equipment does not fit the water tank properly.

Motivated by the importance of emergency response scenarios,
a number of approaches have recently emerged, particularly within
the multi-robot routing domain, to address some of these issues.
For example, Koenig et al. provide a number of auction-based
multi-robot routing algorithms that allow the allocation to tasks
that provide quality guarantees on the solutions computed [2, 7].
However, their work focuses on finding the best paths for robots to
visit tasks and does not consider team capabilities, task workloads
or deadlines. On the other hand, [13] provide algorithms to allo-
cate tasks in large scale systems and dynamic environments, based
on token passing. Their approach ensures that the right agents are
routed to the right tasks based on capability thresholds (i.e., how
much of certain capabilities is needed to complete the task). Now,
while their approach does consider agent capabilities and execution
constraints for tasks (e.g., two tasks that must be executed at the
same time), they ignore the benefit of forming coalitions of agents
to work on the same task. Recently however, [6] provide anytime
algorithms based on Mixed Integer Programming (MIP) to allocate
teams of robots to tasks requiring teams with specific capabilities.
While their work bridges a major gap in the literature, there is still
a lack of solutions for tasks with deadlines and coalitions with the
same capabilities but different degrees of effectiveness. Now, such
a dearth of solutions can be partially blamed on the fact that the
problem of allocating coalitions to tasks in space and time is not as
well defined as other important combinatorial optimisation prob-
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lems such as the Travelling Salesman Problem (TSP) (on which
most work on multi-robot routing is based). Nevertheless, we be-
lieve it is important to define the problem, relate it to other existing
combinatorial problems, so that approximate solution techniques
and anytime heuristics (that provide increasingly better solutions if
given more time) can be re-used, and to devise new solutions that
tackle the specific features of this problem.

Against this background, in this paper we define the problem
of allocating coalitions of agents to spatially distributed tasks with
workloads and deadlines so as to maximise the total number of
tasks completed over time. More precisely, we introduce the fol-
lowing setting. Consider a set of tasks and a set of agents, with
their given locations and corresponding travel times between them.
Each task is associated with a workload and deadline so that the
task is considered completed if and only if the required amount of
work on it is done by the given time threshold. Furthermore, if a
number of agents are working on a task simultaneously, their con-
tribution per time interval may not be necessarily additive. Thus,
while each of agents i and j, on their own, can do x amount of
work in a time interval, they may produce y > 2x (y < 2x in case
of sub-additive domains), if they collaborate and work on the task
at the same time. Given these spatial and temporal constraints and
coalitional effects, the goal is to schedule agents to tasks so that the
number of completed tasks is maximised. We term this model as
Coalition Formation with Spatial and Temporal constraints prob-
lem (CFSTP).

Our contribution includes a formalisation of the problem and
a definition of its relationship with other existing combinatorial
optimisation problems. Moreover, we show how to solve it opti-
mally and approximately using MIP and scheduling heuristics re-
spectively. Specifically, this paper advances the state of the art in
the following ways. First, we show that the CFSTP is NP-Hard
and generalises the well known Team Orienteering problem (TOP),
which itself generalises the TSP. In so doing, we build the case for
developing new algorithms for the CFSTP since it is not possible
to directly apply those used in other problems. Second, we pro-
vide an optimal solution to the CFSTP using MIP as a benchmark
to solve small-sized problems where computation time is not an is-
sue. Third, we devise new anytime heuristics to find approximate
solutions fast and hence provide the first lower bounds on the solu-
tions that can be found in any given CFSTP. Finally, we empirically
evaluate our algorithms and show that they compute (in less than 5
seconds) 97% efficient solutions for non-trivial problems involving
up to 20 agents and 300 tasks (with uniformly distributed work-
loads and deadlines). Thus, our work encompasses all aspects of
the CFSTP, from the model, generalisations, optimal solution, and
an anytime heuristic. Moreover, our algorithms can be regarded as
the first to ever solve the CFSTP and are therefore the benchmarks
against which future algorithms for the CFSTP can be evaluated.

The rest of the paper is organised as follows. In Section 2, we
provide notation and basic definitions, and present the formal CF-
STP model in Section 3, using a disaster management scenario as
a running example. Then, Section 4 examines the complexity of
the problem, shows how the CFSTP generalises the TOP and hence
is NP-hard. In Section 5, the MIP formulation for the CFSTP is
provided, as well as some results on the scalability of the approach.
Section 6 describes our heuristics that provide approximate solu-
tions to the CFSTP. Section 7 empirically evaluates our algorithms
and Section 8 concludes.

2. BACKGROUND
We first provide the basic notation and then go on to expand on how
coalitions can be represented and how allocations of agents to tasks
can be used to generate allocations of coalitions to tasks.

2.1 Basic Definitions
Agents are noted as a1, . . . , an ∈ A that have to complete a num-
ber of tasks v1, . . . , vm ∈ V located in different parts of a space
(more than one task may be located in the same place); the set
of all possible task locations is denoted by LV . A concrete ex-
ample of such a scenario exists in the RoboCupRescue simula-
tor where a number of ambulances have to allocate themselves to
victims trapped in buildings or fire brigades need to form coali-
tions to extinguish fires across a city [5]. The time taken for an
agent to travel from one location to another is given by a function
ρ : (LA ∪ LV ) × LV → [0,∞] (assuming all agents can move at
the same speed) where LA is the set of agents’ initial locations in
the environment. Each task v ∈ V has a demand consisting of two
parameters as follows: deadline, dv ∈ [0,∞], (e.g., representing
the time until which the victim will survive without being rescued
or the time until which the fire can be controlled) and workload,
wv ∈ [0,∞], (e.g., denoting the amount of work (in time units) that
has to be done to extract the victim or extinguish the fire). We will
denote as dmax the latest deadline, that is, dmax = maxv∈V dv .
Moreover, we assume that time is discrete such that agents travel
or perform tasks in measurable time units (e.g. seconds, minutes or
hours) starting at time equals zero.

2.2 Coalitions
Agents may form coalitions for several reasons. First, the number
of tasks may be much larger than the number of agents. Hence,
agents need to schedule themselves in, possibly different, groups
to try and maximise the number of tasks completed. Second, the
workload for a given task may be too high for one agent to complete
it by the deadline of that task. Hence, agents need to work together
on the same task at the same time to complete it in time.

We define what it means for an agent to “work” on a task later
in this section. First, however, we denote the fact that an agent
a works on a task v at a given time t by τa→v

t . We define T =
{τa→v

t }a∈A,v∈V,t∈{0,··· ,dmax} as the set of all possible allocations
of agents to tasks. When one or more agents work together on the
same task, they work as a coalition, C ∈ 2A; in a similar way,
we denote by τC→v

t the fact that a coalition C works on task v
at time t. In effect, the coalition captures the synergistic effect of
the agents’ capabilities which helps them complete tasks faster than
they would if they worked separately (at different points in time) on
the same task. Now, given an agent allocation T ′ ⊆ T and a time
horizon t′ ∈ {0, · · · , dmax} within which we want to explore the
coalitions that could exist,1 we define the corresponding (feasible)
allocation of coalitions, Γ(T ′, t′), over the given time period, as
follows:

Γ(T ′, t′) =
n

τC→v
t | C = {a | τa→v

t ∈ T ′}, v ∈ V, t ≤ t′
o

(1)

The above definition basically means that a coalition C exists for
task v at time t if all agents a ∈ C work on v at t. This also
means that only one coalition exists at a given task at any one time.
Given this, we denote by Γ = {Γ(T, dmax)} the set of all coalition
assignments generated by T .

Obviously, physical agents cannot be allocated to all tasks at all
times and, therefore, the solution to the allocation problem will
involve agents working only on some tasks at some points in time.
More precisely, we will say that an allocation of agents is feasible if
it assigns an agent to two different tasks only in time points whose
difference is greater than the travel time between the corresponding
tasks. Given this, note that if T ′ ⊆ T is a feasible agent allocation,
then it generates a feasible coalition allocation, Γ(T ′, t′), over any
time period [0, t′], t′ ≤ dmax. Therefore, coalitions that exist at
different locations at the same time do not overlap.
1This will become useful when we discuss the algorithms to gen-
erate a solution.
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The work that a coalition performs on a task in each time unit
(or, step) decreases the workload of that task.2 For example, con-
sider the case of a victim buried under debris in the RoboCup Res-
cue domain [5], by removing part of the debris rescue agents re-
duce the amount of work necessary to dig out the victim. The ex-
tent to which the workload decreases is dependent on the value of
the coalition, given by the function u : 2A → N

+. The func-
tion u(·) basically expresses how well the agents involved in the
coalition work together and how their capabilities match. For ex-
ample, if agents a1 and a2 have a coalition value of u({a1}) = 1
and u({a2}) = 1, then, if they work together they may generate a
value u({a1, a2}) = 3, if their capabilities are synergistic. We will
assume for now that coalition values are independent of the task
the agents work on and that coalitions of more agents are usually
better or equal to coalitions of smaller numbers of agents. That is,
u(C ∪ {a}) ≥ u(C).3 For now we will also assume tasks are,
in turn, homogeneous. Since tasks are considered to be atomic,
only one coalition can perform one task at a time. For example, the
above assumptions hold when we consider the problem of allocat-
ing ambulances to rescue victims in the RoboCup Rescue domain.

Given the above definitions, we next define the CFSTP that this
setup generates and detail the associated constraints.

3. COALITIONS WITH CONSTRAINTS
The goal of CFSTP is to maximise the number of tasks completed
given all possible allocations of agents to tasks. In particular, this
allocation needs to take into account two main types of constraints:
temporal and spatial. The former take care of restrictions with re-
spect to the time taken by agents to finish a task, while the latter
restrict the movement of agents around the tasks given the time
available to them. In what follows, we detail these constraints and
then formulate the objective function we aim to maximise. We will
assume that the solution should contain some allocation of agents
to tasks as the set T ′ ⊆ T .

3.1 Temporal Constraints
To specify constraints on the agents’ completion of tasks, we define
a binary-valued function W : V × Γ → {0, 1} as follows:

W (v,Γ) =

j
1, wv −P

τC→v
t ∈Γ u(C) ≤ 0

0, otherwise (2)

Thus, W (·) expresses the fact that a task can only be completed if
all the work done on that task by all coalitions equals or is greater
than the workload of that task. However, the coalitions can only
be effective up till the deadline of the task, after which the task is
deemed failed. To express the success or failure of a task, we define
the function Δ : V × Γ → {0, 1} as follows:

Δ(v, Γ) =

j
1, maxτC→v

t
∈Γ t ≤ dv ∧ W (v, Γ) = 1

0, otherwise (3)

Thus, Δ(·) returns 1 only if the given task can be completed as per
the schedule of agent assignments specified.

3.2 Spatial Constraints
The fact that tasks are spatially distributed implies that there is a
cost to switching from one task to another. This cost is captured
by the time spent by agents in travelling from task to task (i.e.,
2Note that we here assume that workloads and deadlines are inde-
pendent (e.g., digging down rubble does not improve the health of
a victim) of the task in any way. In future work we will consider
removing this assumption.
3While these assumptions are reasonable in most robot routing and
emergency response domains, and help speed up computation, we
aim to remove them in future work.

function ρ) or the delay for a coalition to be formed when several
agents need to meet to work on a task (i.e., some agents have to
wait for others). These spatial constraints therefore apply over the
existence of coalitions. If agent a is routing to task v from location
l ∈ LA ∪ LV (which is either its initial location or another task) at
a given time t, the starting time sv

a ∈ [0, dv] at which agent a starts
working on the task v must satisfy the following:

s
v
a ≥ t + ρ(l, v) (4)

Note that given the condition in (4), coupled with the deadline
constraint (3), and assuming that travel times are proportional to
distances between the locations (and hence satisfy the triangle in-
equality), we can restrict all possible assignments to the following:

T =
˘{τa→v

t }t∈{ρ(la,v),··· ,dv}}a∈A,v∈V

where la ∈ L is the location of agent a at time t.
Similarly, at a given time t′, if we knew the partial solution (i.e.,

the allocations of each agent) up to this point, we could replace the
initial location of agent a with its current location, lat′ . Thus, at
each time t′, given a specific task v and a subset of agents A′ ⊆ A,
we can specialise the set of all possible allocations to:

T (A′
, v, t

′) =
n
{τa→v

t }t∈{t′+ρ(la
t′

,v),··· ,dv}

o
a∈A′

(5)

Now, depending on where the agent is routing from, its starting
time at a particular location is restricted in two ways. First, if agent
a arrives at v from its initial location la ∈ LA, then:

s
v
a ≥ ρ(la, v) (6)

Second, if within the assignment T , agent a moves to v from an-
other task v′, then:

s
v
a ≥ s

v′

a + | ∪t∈{ρ(la,v′),··· ,t′≤dv′}τ
a→v′

t | +ρ(v′
, v) (7)

where t′ is the time at which a stops working at v′.
Similar to (6), (7) requires that an agent will not start working on

a task before reaching it. Here, the second term in the right hand
side represents the amount of time that agent a spends in total on
task v′—the sum of this and the starting time of a on v′ gives the
earliest time agent a can leave task v′; by adding to this ρ(v′, v)
we get the earliest time by which task v is reached by agent a.

Note that the routing of agents to tasks in T may not actually be
feasible (i.e., where the agents reach the tasks before their dead-
lines) and one of the challenges is to find those routes that are
feasible and efficient (i.e., minimise the time travelling and max-
imise the tasks completed). To find such an assignment we note
this problem is very similar to solving a Vehicle Routing Problem
(VRP) with time windows [14]. Thus, to find an assignment that
is consistent with the constraints defined in section 3.1 is, in turn,
equivalent to finding a feasible schedule for the tasks [9]. Thus,
the problem is a complex combination of both routing and schedul-
ing that generates a search space that grows exponentially in the
number of tasks that can be attempted (as we show next).

3.3 The Objective Function
The main objective of the CFSTP is to maximise the number of
tasks completed. This can be expressed as follows:

arg max
Γ∈Γ

X
v∈V

Δ(v, Γ), (8)

subject to constraints in equations (6) and (7).
It is important to note that the space over which the function

iterates is very large—in the worst case, we might need to con-
sider nearly |V |!d|V |

max possible plans for each agent! In order to
understand the practical implications of trying to find an optimal
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solution in this case, we propose an optimal algorithm based on
MIP in section 5 and evaluate it with increasing numbers of agents
and tasks. We show that while the MIP algorithm is a good bench-
mark for small sized problems, as expected, it does not scale up
for large problems requiring quick solutions. Hence, in section 6
we propose novel heuristics to try to combat the complexity of the
CFSTP. Before doing so however, in the next section we elaborate
on the complexity and other combinatorial problems related to the
CFSTP. Our aim is to show that the CFSTP is a novel optimisation
problem that generalises several existing combinatorial problems.
This sets the stage for further analysis of all the possible special
cases of the CFSTP (which is beyond the scope of this paper).

4. COMPLEXITY ANALYSIS
In this section we show that CFSTP falls within the class of NP-
hard problems, and show how it is a new generalisation of the Team
Orienteering Problem.

4.1 NP-Hardness of the CFSTP
The well-known Orienteering Problem (OP)4 is defined as follows.
Given n nodes in the Euclidean plane, each with a score σ(i) ≥ 0
where σ(1) = σ(n) = 0, find a route of maximum score through
these nodes that begins at 1 and ends at n, and whose duration is no
greater than a given value tmax. This problem (and, in particular,
its special case with unit scores, i.e., σ(i) = 1 for any i �= 1, n)
has been shown to be NP-hard [3], as it contains the Travelling
Salesman Problem (TSP) as a special case. Similarly to the proof
in [3], the TSP can be reduced to our problem or, alternatively, one
can observe that the unit-score version of the OP is a special case
of CFSTP, hence the following result.

THEOREM 1. CFSTP is NP-hard.

PROOF. To see this, consider a single-agent version of CFSTP
in which the set of tasks corresponds to the subset of nodes {i �=
1, n}, the agent’s initial location is given by node 1, and the travel
times ρ(·) between the locations are set up accordingly with the
distances δ(·) between the corresponding nodes on the plane. Set
the workloads wv = 0 for all tasks v and the deadlines to dv =
tmax − δ(iv, n), where δ(iv, n) is the distance between node iv
that corresponds to task v, and the terminal node, n. It is easy to
see that any feasible solution for this problem is feasible for the
corresponding OP, as the deadlines are set in a way that from any
visited location (including the last one in the route) the terminal
node can be reached by the time tmax. For optimality, notice that
since travel times between the locations are determined by distance
on the Euclidean plane, the triangle inequality holds, and hence
ρ(i, n) ≤ ρ(i, i0)+

Pk

j=1 ρ(ij−1, ij)+ρ(ik, n), for any sequence
of nodes (i, i0, i1, . . . , ik, n). Thereby, our deadline requirements
are not “overrestricting”. Therefore, if we had a polynomial al-
gorithm for solving CFSTP, we could find a route starting at 1 and
ending at n, that maximises the number of locations visited by time
tmax, thus solving the OP in polynomial time. Since the OP is NP-
hard, the CFSTP is at least as difficult; in fact, even its simplified,
single-agent version with zero task workloads, is so.

4.2 Generalising the Team Orienteering Prob-
lem

Having shown that CFSTP is NP-hard based on its generalisation
of the OP (which basically ignores deadlines, workloads, and coali-
tions), we now turn to defining how it generalises the extended ver-
sion of the OP, the Team Orienteering Problem (TOP) [1], in which
4Also referred to as the “generalised traveling salesman problem”
[15].

the performance of the entire set of agents is taken into account.
In TOP, each member of the team (assuming that all start at the
same point) tries to visit as many locations as possible within a
prescribed time limit, and then ends at the terminal point (also joint
to all). Once a team member visits a location and is awarded its
associated score, no other agent can be awarded a score from the
same point. Thus, each agent has to choose a sequence of locations
to visit so that there is minimal overlap in the locations visited by
the members of the team, the time limit is not violated, and the total
team score is maximised. We now show that the TOP can be viewed
as a special case of the CFSTP. Specifically, we reduce from the set
of TOP with integer scores. We then proceed and argue that con-
sidering integer scores is sufficient as for any TOP with real scores
there is a corresponding problem with integer scores whose set of
optimal solutions is included in that of the original problem.

Consider an instance of the TOP with integer scores and reduce
it to CFSTP as follows. With each node i �= 1, n with score σ(i),
associate a location, li, with tasks {vi

1, v
i
2, . . . , v

i
σ(i)}. Assign zero

travel times between any two tasks at the same location; for tasks
at different locations set travel times according to the distances be-
tween the corresponding nodes. As before, set zero workloads to
all the tasks and for each task vi at location li define its deadline as
dvi = tmax − δ(i, n), where δ(i, n) is the distance from i to the
terminal node. Since the workloads are zeros, any time an agent
visits a location, it can complete all the tasks at it, and thus col-
lect the full score of the corresponding control point. Obviously, if
another agent visits the same location, this will not bring any addi-
tional score to the team. By similar arguments regarding feasibility
and optimality of routes we gave for the single-competitor case, we
conclude that the sets of optimal solutions for the two problems
coincide.

Now, it remains to show that every TOP can be represented by a
TOP with integer scores. This is true because the number of nodes,
and hence, the number of scores, is finite, and therefore so is the
number of their possible subsums—representing possible objective
values of the problem. Indeed, a feasible solution is given by the
subset of nodes so that there is a route that has a total length no
greater than tmax through these nodes, and the corresponding ob-
jective value is given by the sum of scores over the selected subset
of nodes; hence, there are at most

Pn−2
q=1

`
n−2

q

´
feasible objective

values. Arrange them in increasing order, and let x be the mini-
mal difference between two values in the sequence. Multiply all
the sequence by M > n

x
(accordingly, each score is multiplied by

M ). Note that the difference between any two values in the mod-
ified sequence is at least n. When all scores are rounded up, each
subsum—value in the sequence—will grow by at most n − 2, and
hence this will not affect the order of the values in the sequence
(note that if there were several solutions with the same objective
value, they may result in different values after rounding; however,
the order of these “groups” of values will remain the same). Now,
the solution that corresponds to the maximal value in the resulting
sequence gives a maximal value in the original sequence of objec-
tive values. Thus, the set of optimal solutions for the TOP with
these modified, integer, scores is contained in the set of optimal
solutions of the original TOP.

From the literature,5 most related studies have typically focused
on routing optimisation under time and capacity constraints, and
ignore the issue of coalition formation and (possibly non-linear)
coalitional contributions to tasks they are assigned to. Thus, the

5Perhaps, the most relevant models to our problem are the Orien-
teering Problem with Time Windows [4] in which a point can only
be visited within a specified time interval, and the Vehicle Routing
Problem with Time Windows and a Limited Number of Vehicles [8]
where a feasible solution may contain unserved customers and/or
relaxed time windows.
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CFSTP is the first attempt to deal with the problem of optimal coali-
tion formation under temporal and spatial constraints. Obviously,
this results in high complexity and difficulty of solution.

5. MIP FORMULATION
We present here our MIP formulation of the CFSTP to establish a
benchmarking optimal solution technique.

Specifically, the aim of CFSTP is to maximise the number of
tasks completed by the agents such that the deadline of each com-
pleted task is met. Our decision variables include binary variables
δv ∈ {0, 1} for each v ∈ V , indicating whether the task v is suc-
cessfully completed, and the objective is to maximise the sum of
these variables over the set of tasks (see 3.3). The schedule deci-
sion variables include sv

a (integer) representing the absolute time
at which agent a ∈ A starts its work on task v ∈ V , and with
a slight abuse of notation we can represent assignments as binary
variables τa→v

t ∈ {0, 1} indicating whether agent a ∈ A is at lo-
cation v ∈ V in the time interval t, t ∈ T = {0, 1, . . . , dmax}
(dmax is defined in section 2.1). We assume that the allocation
process starts from the time interval t = 1, and use the zero time
interval for sake of formulation only. Thus, for all agents and loca-
tions we set zero service at time t = 0 and use a convention that
zero starting time for a particular agent at a particular location es-
sentially means that the agent never starts working at this location.
The coalition values u(C) ∈ R are assumed to be given as an input.
Given this we use τC→v

t ∈ {0, 1} as binary variables to indicate
whether a coalition of agents C, C ∈ 2A, is the one working on
task v ∈ V in the time interval t ∈ T (see (10) below). We use
routing variables ra

ij (binary) to indicate whether agent a ∈ A trav-
els from location i ∈ LA ∪ LV to location j ∈ LV . Now, we can
finally formulate CFSTP in terms of the objective function and a
set of constraints.
Objective function:

max
X
v∈V

δv . (9)

subject to:
• completion constraints:

dmaxX

t=0

X

C∈2A

τ
C→v
t u(C) ≥ δvwv,∀v∈V, (10)

dmaxX

t=0

X

C∈2A

τ
C→v
t ≤ M · δv ,∀v∈V, (11)

X

C∈2A

τ
C→v
t ≤ δv ,∀t∈[0,dmax],v∈V,t∈[0,dmax ], (12)

• deadline constraints:

s
v
a +

dmaxX

t=0

τ
a→v
t ≤ dv,∀v∈V,a∈A, (13)

• starting time, routing, and service consistency constraints:
ρ(la,j) ≤ s

j
a + M(1 − r

a
laj),∀a∈A,j∈LV , (14)

s
i
a +

dmaxX

t=0

τ
a→i
t + ρ(i, j) ≤ s

j
a + M(1 − r

a
ij),∀a∈A,i,j∈LV ,(15)

X

v∈V

τ
a→v
t ≤ 1,∀a∈A,t∈T, (16)

1 − 2|t − (sv
a)| ≤ τ

a→v
t − τ

a→v
t−1 ,∀a∈A,v∈V,t∈T \{0}, (17)

dmaxX

t=0

|τa→v
t+1 − τ

a→v
t | ≤ 2,∀a∈A,v∈V, (18)

1 − |t − (sj
a − ρ(i, j)| − M(1 − r

a
ij) ≤ |τa→i

t − τ
a→i
t−1 |,

∀a∈A,i,j∈LV ,t∈T\{0}, (19)

r
a
ii = 0,∀a∈A,i∈LV , (20)

r
a
laj +

X

i∈LV

r
a
ij ≤ 1,∀a∈A,j∈LV , (21)

X

j∈LV

r
a
ij ≤ 1,∀a∈A,i∈LV ∪{la}, (22)

X

i∈LV

r
a
ij ≤ M

X
τ

a→j
t ,∀j∈LV ,a∈A, (23)

X

i∈LV

r
a
ij ≤ M

X
τ

a→i
t ,−∀i ∈ LV , a ∈ A, (24)

• linking constraints:X

a∈A,i∈LV ∪{la}

r
a
ij ≥ δi,∀j∈LV , (25)

X

a∈C

τ
a→v
t ≥ |C| · τ

C→v
t ,

∀C∈2A,a∈C,v∈V,t∈[0,dmax ], (26)

s
v
a ≤ M

dmaxX

t=0

τ
a→v
t ,∀a∈A,v∈V, (27)

dmaxX

t=0

τ
a→v
t ≤ Ms

v
a,∀a∈A,v∈V, (28)

s
v
a ≥

X

i∈LV ∪{la}

r
a
ilv

,∀a∈A,v∈V, (29)

s
v
a ≤ M

X

i∈LV ∪{la}

r
a
ilv

,∀a∈A,v∈V, (30)

X

i∈LV

τ
a→i
t ≤ 1,∀t∈[0,dmax ], (31)

τ
a→v
0 = 0,∀a∈A,v∈V, (32)

where ρ(i, j) represents the travel time from i ∈ LA ∪ LV to j ∈
LV , and M is a large positive number.

The completion constraints in (10) to (11) determine whether
the total contribution of all the agents to each task is either greater
than or equal to the task’s workload (if the task is completed) or
zero (otherwise). In particular, (12) enforces unique assignments of
coalitions to completed tasks. Constraint (13) requires the deadline
of each (completed) task to be met (note that by (10), (11) and by
the convention about starting times, in the case of an uncompleted
task, the left hand side of the inequality will be equal to zero).

The routing consistency constraints in (14) and (15) imply that
the starting time of a particular agent at a particular location is
greater than or equal to the time at which the agent is able to arrive
at the location after it had finished its work at the previous loca-
tion, or from its initial location (for its first task). The constraints
in (16) require an agent to be working at most at one location in
a particular time interval. Constraint (17) implies that the binary
service variable τa→v

t of agent a at location v has different values
at times t − 1 and t if the corresponding starting time equals t;
constraint (18) then requires that an agent changes its service status
(i.e., “working” v/s “not working”) at a particular location at most
twice. Coupled with (32), this implies that if an agent is working
at a particular location, then its service indicator changes it value
from zero to one at the starting time, and then from one to zero
when the agent stops its service. Constraint (19) links between
service binary variables and finishing service times, in a similar
way. Routing constraints in (20)-(22) require that an agent does
not travel from a location to itself, and, given a particular location,
it can arrive there from only one previous location and can leave
from there for at most one next location.

The linking constraints in (25)-(30) determine that the following
conditions are satisfied: (i) if there is an agent that arrives to a par-
ticular location, the task at this location should be completed; (ii)
a coalition is considered to be working at a particular location in
a given time interval if and only if all its members are working at
that location in that time interval; (iii) an agent starts working at a
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particular location if and only if it spends some time at this loca-
tion; (iv) an agent starts working at a particular location if and only
if it actually arrives there from a previous, or from its initial, loca-
tion. Moreover, coupling constraint (18) with (26) also ensures the
coalition (of which the agents are members) service time variable
only changes twice. Also constraints (31) and (32) ensure that the
algorithm allows agents to service only one task per time step and
does not assign agents to tasks at time equals zero respectively.

We implemented the solution presented in this section using IBM
ILOG CPLEX 9.1 and found that for small scenarios with not more
than 4 agents and 7 tasks, the algorithm takes more than 2 hours to
find the optimal solution. Since the problem is NP-Hard, it was ex-
pected that the running times would grow exponentially. While this
permits solving small problems off-line, such running times are not
acceptable for the type of domains (e.g., emergency response and
surveillance missions) that need solutions to the CFSTP online. In
particular, there is a need for algorithms that can return solutions
quickly and anytime (i.e., the algorithm starts by giving partial so-
lutions and improves upon them if given more time). We present
such a solution in the next section.

6. THE SCHEDULING HEURISTICS FOR-
MULATION

Having established the benchmark for optimal algorithms for the
CFSTP, we now turn our attention to designing approximate pro-
cedures that can return efficient solutions quickly. Thus, here, we
first present a set of heuristics that allow us to generate assignments
τa→v

t for each agent in the system and then define a procedure
which optimises over these possible assignments.6 We incorporate
these procedures into our Coalition Formation with Look-Ahead
(CFLA) algorithm. Generally speaking, the CFLA is based upon
the following main objectives:
1. Maximise the number of tasks completed—to achieve this we
only allocate agents to tasks that they can complete.
2. Maximise the working time of the agents—to achieve this we
make sure that the smallest coalitions possible are allocated to each
task. In so doing, we ensure that the maximum number of tasks
are attempted at any one time and we minimise the travel time of
all the agents (since making more agents travel to the same tasks
increases the total travel time and hence less time is actually being
used to work). However, the tradeoff in maximising the working
time is that the agents may take longer to finish some tasks and
can therefore not finish future tasks. Thus, to minimise the risk of
losing future tasks, in the CFLA we perform a one-step look-ahead
(more than one step leads to significantly more computation) to
find out the consequence of completing each task with each possi-
ble coalition. Hence, while our solution may not return an optimal
solution, it clearly establishes an empirical lower bound on the op-
timal solution (see section 7).
3. Minimise the time taken by coalitions to complete the maxi-
mum possible number of tasks—to achieve this we need to make
sure that the most efficient coalitions are chosen to complete the
maximum possible tasks that can be reached. Specifically, an op-
timal algorithm would try to balance the allocation of the agents
across all the tasks to minimise the overall time to complete the
maximum possible number of tasks. However, doing so, would
require searching an exponentially large (in the number of tasks)
space. In contrast, we adopt a greedy approach to allocate the most
efficient coalition to the most important tasks (where importance
can be defined in terms of how many other tasks could be com-
6It is important to note here that we do not use one of the many
heuristics that have been used in TSP or OP because such heuristics
generally do not incorporate a notion of coalition values and, as a
result, would not constitute admissible heuristics for the CFSTP.

pleted in the next time step when agents are allocated to the given
task), which generates good solutions in reasonable time.

Based on above principles, the algorithm works as an iterative
process as follows: Step 1: define which tasks can be reached by
their deadline by which agents: Step 2—define which coalition of
agents should be allocated to a given task; Step 3—define which
tasks to attempt first; Step 4—repeat from step 1 assuming agents
start from the point where they finish their previous task until all
tasks are allocated. We now detail each step in turn.

6.1 Step 1: Defining Feasible Allocations
Recall from section 2.2 that the set T contains all possible assign-
ments of agents at all times. Then let T ′ ⊆ T and t′ be the point in
time such that Tt′ = {τa→v

t }a∈A,v∈V,t∈{0,··· ,t′}. Here we show
how to exactly define Tt′ . Thus, we need to find which tasks are
accessible by each agent in the system. By “accessible”, we mean
that the agent can reach the task at time t′ given its earlier position
lta at time t < t′. Let us assume that there exists a set At′

busy that
stores all agents that are working (or travelling to a task) at time
interval t′. We show how to construct At′

busy when agents get allo-
cated in section 6.3. Now, also assume that the set of tasks that have
not been completed at time t is Vt. Then, using algorithm 1 we can
construct Tt′ . To do so, the algorithm loops through all agents that

Algorithm 1 Define the set of feasible assignments.
Require: A

t′

busy

1: Tt′ = ∅ {Initialise with empty set.}
2: for all v ∈ Vt do
3: for all a ∈ At′ = A \ A

t′

busy do
4: if t + ρ(lta, lv) ≤ t

′ where t ≤ t
′ {a can reach v at t

′} then
5: Tt′ ← Tt′ ∪ {τ

a→v
t′

} {include the agent}
6: end if
7: end for
8: end for

are not busy and checks in step 4 that the agent can arrive at the
task at time t′. By defining the allocation of agents at every time t

using Tt we are able to generate new positions for agents for later
time points and hence define new starting positions for t′′ > t′.

Now, having computed Tt′ , we can construct assignments at time
t of coalitions to tasks Γ(Tt′ , t) (defined in 2.2). However, as we
are aiming to maximise the number of tasks attempted, we next try
to find the smallest possible coalitions that can service the tasks.

6.2 Step 2: Choosing the Best Coalition
In this step, we compute the best set of agents that can be allocated
to complete a given task. Our approach is based on a minmin ob-
jective whereby we try to minimise both the size of the coalitions
used and the time at which a task can be completed. To this end,
here, we detail an earliest-completion-first (ECF) allocation algo-
rithm (adapted from [11]) that iterates over the set of possible agent
allocations (defined in step 1) to generate the possible allocations
of coalitions to tasks τC→v

t at time t. Using our ECF algorithm we
try to minimise the completion time for the given task so that agents
can be allocated to other tasks as soon as possible. Thus, in step 2
of algorithm 2, we first define the size of the smallest coalition that
can complete the task. This is a non-trivial process that requires
searching through all coalitions that can reach the task and check-
ing whether they can complete it. This procedure, in the worst case,
involves searching 2|Av | coalitions where Av is the set of agents
that can reach v. Given this, our solution involves applying binary
search to select the best coalition size, coupled with [10]’s linear
time algorithm to loop through the coalitions of the selected size,
resulting in computation of O(

Psizemin
k=0 2k). Having done so, the
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Algorithm 2 ECF algorithm.
Require: Tt′ , v ∈ Vt

1: Define Γ(Tt′ , dv) as in equation (1).
2: Find sizemin = min

τC→v
t

∈Γ(T
t′

,dv)
|C| where

Pdv−t′

t u(C) · t −

wv ≥ 0 {get the minimum size of the coalition that can complete the task — use
binary search and algorithm by [10] for this.}

3: set t
min
v ← dv

4: for all τ
C→v
t ∈ Γ(Tt′ , dv) where |C| = sizemin {use [10] to cycle

through coalitions of a given size.} do
5: work ← wv −

P
τC→v

t′
,t′∈{t,··· ,dv}

u(Cv)

6: if work ≤ 0 then
7: tminmax = mintmax (wv −

P
τC→v

t′
,t′∈{t,··· ,tmax}

u(Cv)

{minimum time at which the task can be completed.}
8: if tminmax < t

min
v {check if this is a better coalition.} then

9: t
min
v = tminmax {record minimum time.}

10: C
∗ = Cv {record the ECF coalition allocation.}

11: end if
12: end if
13: end for
14: return C

∗

algorithm loops through coalitions of the given size (sizemin) to
find the one that can complete the task the earliest (steps 4 to 13).

As can be seen, the ECF algorithm is completely myopic as it
does not consider the effect of allocating a coalition on other tasks
to be allocated at a later time t′ > t. To be able to capture such
effects, it is first important to represent the effect a given allocation
can have on future allocations and then apply an algorithm that can
take into account such effects. To this end, in the next section we
detail just such a procedure which is the core of the CFLA.

6.3 Steps 3 & 4: Allocating Tasks
Given the procedure to choose the best coalition for a given task,
the algorithm proceeds by going through each task to check how
many tasks will be accessible in the future. Based on this, it pri-
oritises tasks that can lead to the most tasks being completed in
future. The algorithm (shown in algorithm 3) proceeds as follows.
We define a set Vcompleted for all tasks that have been completed.
This set is populated as the algorithm runs through all tasks and
allocates coalitions as it goes along. Then, for each task that has
not been completed yet, it picks the best coalition that can be allo-
cated to it (steps 5 to 7) using a combination of algorithms 1 and
2. Then, for each other task that has not been visited yet, the al-
gorithm checks to see if, after assigning the coalition selected (step
9), the available set of agents can complete other tasks at later times
(see steps 10 to 19). For each reachable task, the count of reachable
tasks is increased by one. In fact, in so doing, we effectively tra-
verse a tree (of depth 1) rooted at a given task and where leaf nodes
represent other tasks that can be completed at a later time given that
a particular coalition has been allocated at the root. The degree of
such a tree rooted at each task is then used as the measure to decide
whether to complete the root task or not (see steps 22 to 25).

As can be seen, we fix the look-ahead to one step since the com-
putation as shown earlier, grows exponentially in the number of
agents and hence, by considering further future steps the required
computation would grow even more. We also show in section 7 that
a one step look-ahead generates good-enough solutions.7 Finally,
it is important to note that as the CFLA incrementally builds allo-
cations, the algorithm is inherently anytime and could be stopped
before completion to give partial solutions (i.e., to more important
tasks) that get better as the algorithm is given more time.

7Note that it is unlikely that values will be defined for all 2n po-
tential coalitions (which we assume here and in our experiments).
Reducing the number of feasible coalitions could significantly re-
duce computation and therefore permit deeper look-aheads.

Algorithm 3 Allocating Tasks.
1: degreev = 0
2: repeat
3: for all v ∈ V \ Vcompleted do
4: set T

′

t = Tt {where t is current time of operation}
5: Generate Tdv from algorithm 1
6: Compute T

v
dv

based on Tdv {Get only those relevant to v.}
7: Generate C

∗

v using algorithm 2 for agent v.
8:
9: Create τ

C→v
t′′

for all t
′′ = t, · · · tv where tv is equal to the time at

which wv −
P

τC→v
t′

,t′∈{t,··· ,tv}
u(Cv) ≤ 0 {keep track of the

time of completion}
10: A

t,tv
busy

= Cv

11: A
tv
busy

= ∪τ′≤tv,τ′′>tv
A

τ′,τ′′

busy

12: Atv ← A \ A
tv
busy

{Update the list that can reach the task at tv .}
13: Update T

′

t=tv
{update the set of assignments according to the completion

time.}
14: count = 0 {a possible number of tasks completed next after task v}
15: for all (vi ∈ V \ Vcompleted ∪ {v} {for other tasks}
16: Generate A

t=dvi
vi

using updated T
′

t=tv
.

17: {Check to ensure all members of this group can reach task vi} do
18: if ∃Cvi

⊆ A
t=dvi
vi

where (wvi
−P

τC→v
t′

,t′∈{tv+travel(lv ,lvi
),··· ,dvi

}
u(Cv) ≤ 0 {agents

can still complete task.} then
19: count = count + 1 {increase the number of tasks that can be

completed after v is completed by Cv}
20: end if
21: end for
22: degreev ← count

23: end for
24: Assign Cv∗ to v

∗ where v
∗ = arg maxv(degreev) {use algorithm 2 }

25: Vcompleted ← Vcompleted ∪ {v
∗}

26: Update Tt {remove allocated agents from available agents, and update Tt

on new agents’ positions.}
27: until V = ∅

7. EMPIRICAL EVALUATION
The worst case guarantee of the CFLA is only 1

|V |
since it is always

able to allocate the best coalitions to a feasible task if there exists
one (a simple verification of algorithm 3 proves this). Compar-
ing with our MIP solution reveals that while, at times the CFLA
can return high quality solutions, the size of the problems that
can be tested (i.e., less than 15 tasks and 5 agents) make the re-
sults hard to generalise. Moreover, the MIP solution takes hours
if not days compared to the CFLA (which only take seconds) as
expected. Therefore, here we evaluate the additional benefit of per-
forming a one-step look-ahead in the CFLA by comparing a com-
mon scheduling algorithm, earliest-deadline-first (EDF) [11], that
allocates ECF coalitions to the tasks that have the earliest deadlines.
Our hypothesis is that, by exploiting the look-ahead, the CFLA
should be more efficient (i.e., complete more tasks) and more effec-
tive (i.e., completing them faster) than the EDF approach. To this
end, here we present an average case study by making no assump-
tion about the structure of the problem and assigning random work-
loads and deadlines. This is important because the performance of
the heuristics significantly depends on a number of parameters in-
cluding, but not limited to: (i) the number and position of agents
and tasks, (ii) the demand (workload and deadline) of each task and
(iii) the coalition values.

7.1 Experimental Setup
Both the CFLA and EDF were implemented in Java. In our ex-
periments we draw coalition values from a uniform distribution as
u(C) = k × |C| where k ∼ U(1, 2) (to simulate super-additive
coalitions). Moreover, for task deadlines and workloads, we gener-
ated these values from a uniform distribution over the ranges of the
deadlines as dv ∼ U(5, 600) and wv ∼ U(10, 50), respectively (to
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Figure 1: Time taken to visit all tasks.
simulate wide ranging scenarios). The number of tasks was fixed
at 300 and the number of agents was varied from 2 to 20 (since the
number of coalitions is 2|A| − 1 we are limited in the size of the
problem we can generate). The positions of the agents were allo-
cated randomly on a 50 by 50 grid where the travel time between
two points was computed as the Manhattan distance between the
points (meaning maximum travel time of 100 time units). With
these settings in place, the problem cannot be solved by each agent
performing tasks on their own and hence the selection of good
coalitions can guarantee a large number of completed tasks. We
measured the percentage of completed tasks, the travel time (i.e.,
number of time steps), and computation time required to complete
them. We ran 100 randomly generated instances of the above setup
for each number of agents and we report in Figure 1 the mean per-
formance and plot the 95% confidence interval (as error bars) for
each instance for the percentage of completed tasks and computa-
tion time, respectively. We next describe the results.

7.2 Results
The CFLA is found to complete more tasks than the EDF (up to
31% in the best case) particularly when the number of agents in
the system is low (see figure 1(a)). Also, as the number of agents
increases, it becomes more apparent that CFLA becomes more ef-
ficient (by up to 16.5% for 20 agents) than EDF in visiting tasks
(see figure 1(b)) even though they complete nearly the same num-
ber of tasks (see figure 1(a)). These results are statistically signif-
icant given that the error bars do not overlap and hence the results
confirm our hypothesis. However, the computation time for CFLA
(4.5s for 20 agents) grows exponentially faster than that of EDF
(1.5s for 20 agents) due to the look-ahead procedure. Finally, the
results show that in non-trivial scenarios CFLA is 85% efficient
with only 10 agents and 97% efficient with 20 agents.

8. CONCLUSIONS
In this paper we have introduced a novel coordination problem: the

CFSTP, which can be used to capture many real world applications
including the coordination of emergency responders in major dis-
asters, and is relevant to other application domains, such as surveil-
lance and patrolling of wide geographical area or multi-robot ex-
ploration of hostile environments. We have shown that CFSTP is
a combinatorial optimisation problem that generalises many other
hard combinatorial problems and is NP-Hard. Given this, we pro-
vided the first benchmark optimal algorithm for CFSTP. Given that
the latter is only appropriate for small and non-urgent problems, we
devise the CFLA algorithm which fast, anytime, and implements a
look-ahead heuristic that can return good solutions in reasonable
time (less than 5s for 20 agents and 300 tasks). Hence, we show
that, on average, the CFLA can find allocations (in less that 5 sec-
onds) that complete up to 97% of the tasks given a ratio of 1:15 of
agents to tasks.

Future work will look at developing anytime optimal algorithms
to solve the CFSTP. In particular, we aim to build decentralised so-
lutions to dynamic versions (where the number of tasks and agents
may not be known in advance) of the CSFTP based on our pre-
liminary work in [12]. We also aim to gather better datasets from
realistic applications such as emergency response, in order to for-
mulate benchmarks for the CFSTP.
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